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Theory of exciton energy levels in multiply periodic systems 

P Hilton, J Goodwin, P Hamson and W E Hagston 
Department of Applied Physics, University of Hull, Hull, HU6 7RX, UK 

Received 5 May 1992 

Abstnet. A general theoretical formalism is developed for evaluating the lowest energy 
levels of an exciton in a system which is of finite size, but multiply periodic, in one 
dimension, whilst being of infinite extent in the other two directions. A particular application 
of the formalism to a Kronig-Penney type I multiquantum well-superlattice structure is 
made and the significance of the results described. 

1. Introduction 

The aim of the present paper is to describe a mathematical technique which effects 
great simplifications in the calculation of the lowest energy bound states of an interacting 
‘two-body’ system (namely, an electron and hole), for a solid-state system which 
possesses translational symmetry in the x-y plane (with a period - few A), together 
with a periodically varying potential in the z-direction (with a period D typically 
-100 A). Such systems have been actively studied in recent years under the general 
title of low-dimensional structures 11-31, From the experimental viewpoint, the optical 
properties of these systems are determined largely by the lowest energy bound states 
of the electron and the hole (i.e. the so-called ‘exciton’ energy levels). If the potential 
energy variation in the z-direction is restricted to a single period, we have what is 
usually referred to as a single quantum well, for which an extensive number of 
calculations of the exciton energy levels have been made in terms of the envelope 
function approximation [4-71. On the other hand, a system with a large number of 
periods in the z-direction (say N) is referred to as a multiquantum well. There appears 
to be a dearth of calculations of the energy levels of excitons in such systems. One 
reason for this is that the N wells of a multiquantum well system can, for wide choices 
of the period 0, act like N independent single wells. However there are other ranges 
of D where the energy levels in adjacent well interact appreciably with one another, 
giving rise to what is usually called a ‘superlattice’. The present paper employs the 
envelope function approximation, and within this approach develops a general tech- 
nique based on the variational principle to evaluate the lowest energy levels of excitons 
for both multiquantum wells and for superlattices. The general formalism applicable 
to any periodic structure is first described, before application is made to a particular 
type of structure called a type I superlattice. 

2. Theoretical model 

The model assumes the validity of the envelope function approximation, which takes 
the wavefunction of the interacting system of an electron and hole in a semiconductor 
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to be written as the product of a Bloch function appropriate to the bottom of the 
associated (electron) conduction or (hole) valence band states together with an envelope 
function describing the relative electron-hole motion. It can be shown that the latter 
satisfies the Schrodinger time-independent wave equation appropriate to a Hamiltonian 
having the form [7] 

H = H,(e) + H,(h) + H3(I) + H4 (2.1) 

where H,(e) describes the periodic one-electron conduction band Hamiltonian 
appropriate to the z-direction 

H,(h) is the equivalent Hamiltonian for the hole 
H3(I )  describes the kinetic energy of the relative motion of the electron and 

hole in the x-y plane 
H4 is the Coulombic potential energy interaction term of the electron and 

hole. 

The present paper is not concerned with the limits of validity of the envelope-function 
approximation rather it addresses the problem of solving the resulting Schrodinger 
equation 

H@=E@ (2.2) 

for the envelope wavefunctions Q and the associated energy levels E. It will be noted 
that the Hamiltonian in (2.1) does not contain a kinetic energy term for the motion 
of the centre-of-mass of the electron and hole. This is because we are interested solely 
in the lowest energy exciton states, which correspond to a wavevector K of zero for 
the centre-of-mass motion. 

The envelope function is taken to have the form 

@ (Pc(ze)(Ph(zh)(P (2.3) 

where rpc(z.)[ph(zh)] is chosen to be an eigenfunction of the periodic one-electron 
Hamiltonian H,(e)[H,(h)], i.e. 

HI(e)rp&J = E C d d  (2.4) 

Hz(h)(Ph(Zh) = Eh(Ph(Zh) (2.5) 

and rp is a (variational) wavefunction whose form will be chosen later. Given the 
specific form of H,(e) and H,(h) the solution of equations (2.4) and (2.5) is a 
straightfomard task. For the general development below we will assume that E., E h .  

pp.(z.) and rph(zh) are known with both pc(zJ and rph(zh) being normalized over the 
multiquantum-well region. Substitution of (2.3) into (2.2) gives 

@*H@ d r  
@*@ d r  ' 

E =  (2.6) 

In order to produce further simplifications in the expression for E, we note that the 
function p describes the relative motion of the electron and hole, and as such can be 
taken to be a function ofthe three variables xl = Ix.-xhl, y,= ly.-yhl and a =Iz.-zhl, 
Thus the denominator has the form . 
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Since the x-y plane is taken to be of infinite extent the integral 

will be a function of a = Iz. - zh( only, whatever the precise form of Q, i.e. 

F ( a )  = I'pI2 dx, dy,. I 
Hence (2.7) can be recast in the form I I'pPc(r,)12dZ.l'ph(Zh)12 dZh F ( a ) .  (2.8) 

Bearing in mind the probability interpretation of the wavefunction we can rewrite 
(2.8) as 

where p(a) is the (uncorrelated) probability of finding an electron and a hole separated 
by distance a. 

Analogous simplifications can be effected in the numerator in (2.6). To this end 
we note the kinetic energy operators in H,(e) and H2(h) will act on the function 'p. 

Since, whatever the precise form of 'p, the following relation is valid 

the extra term in the numerator, in addition to the one-electron energies, E. and E, 
that arise from the kinetic energy operators along the z-direction, can be readily shown 
to have the form 

with 

1 +- 1 1  _=- 
P ( m e ) z  (mh). 

where (me),[(mh),] is the electron [hole] effective mass in the r-direction. 
Again, in an obvious notation 

and (2.10) has the form 

Utilizing all the previous equations enables us to recast (2.6) in the form 

(2.10) 

(2.11) 

(2.12) 
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Further simplification of (2.13) can only be effected by employing a specific choice 
for the function rp. In order to illustrate, we will consider the Is-state of an exciton. 
For this situation the function ‘p is taken to have the form 

rp=exp($) (2.14) 

(2.15) 

where p and A are variational parameters chosen so as to maximize the binding energy 
of the exciton. The key feature of the present analysis which we wish to demonstrate 
is concerned with effecting great simplifications in the integrations over the x-y  plane. 
To this end consider the Hamiltonian 

where m, is the reduced mass in the x-y plane. In the evaluation of the numerator 
in (2.13) we will meet integrals of the following type 

low& exp( $)rL dr, (2.16) 

To simplify this integral we first make the scale change (see (2.15)) 

r, = ( I  -p2)l’2ar: 

followed by r l  = sinh B to give 

[ow(l-p2)n2sinh2 Btanh 8exp[(-2/A)(1-p2)1’2a cosh Old& (2.17) 

In turn we then change variable to x = e-’ thus yielding 

There are two points to note about the result in (2.18). First it is a function of 
a = Iz.-z,l-thus making it of the same functional form as the G ( a )  appearing in 
(2.11). This means that when the integration over z,  and zh is subsequently carried 
out, the resulting integral can again be cast into the same general form as that in (2.12). 
Secondly, the range of integration in (2.18) extends from 0 to 1 only-thus enabling 
an easy and accurate numerical evaluation of it to be made on a computer for a given 
choice of p, a and A. This same technique permits all the integrals to be cast into the 
same general form without the need for reverting to a series expansion as is normally 
done for example in evaluating H4 [4-61. As a final example to illustrate this feature 
we consider the term in the numerator on the right-hand side of (2.13) associated with 
H.. The resulting integral involves the following term 

(2.19) 

where 
r2 = r:+ a2. (2.20) 
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From (2.20) we have, for a fixed value of a, 

r d r =  r, dr, 

and (2.19) becomes 

jam e-""/* dr. 

From (2.15) we have 

$2 = ** - p'a'. 

We therefore make the scale change 

r = par, 

followed by r, =cosh 0 to given in place of (2.21) 
f m  

(2.21) 

pa sinb 0 exp[(-Zpa)/A sinh 81 do. J c d , , * ,  
Introducing x = gives finally 

- x) exp[(-pa)/A( l /x -x)] dx. 

Note again that the range of integration satisfies O S  x <  1, since (see (2.15)) p satisfies 
0 6 p 6 1, with p = 0 being a 3~ exciton and p = 1 representing a ZD exciton. 

In summary we see that the present approach reduces the problem of calculating 
exciton binding energies to an evaluation,of a series of integrals of the type 

I = p(a)G(a)  d a  J 
where G ( a )  involves numerically integrating a given function over the variable x with 
x satisfying O S X S  1. The entity p ( a )  represents the (uncorrelated) probability of 
finding an electron and hole separated by a distance a. To evaluate the p(a)s,  we 
simply solve the one-electron Schrodinger equations (2.4) and (2.5), normalize the 
resulting wavefunctions 9. and qh and then (numerically if necessary) evaluate integrals 
of the type 

(2.22) 

It is to be stressed that within the present formalism the only difference betwen the 
various possible periodic structures whether they be sawtooth, rectangular, parabolic, 
etc., is in the form of the p(a)s. Similarly, for a given structure, the only difference 
between a multiquantum well and a superlattice is the variation in the value of the 
p(a)s with the period D. 

3. Application to a type I superlattice 

Figure 1 depicts the potential well structure for what is termed a type I superlattice. 
The number of periods can be extended indefinitely. In order to illustrate the present 
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CdMnTe CdTe CdWnTe CdTe CdMnTe 

wel l  barcler we l l  

FIgure 1. Conduction band (CB) and valence band (VB) alignment at r =  0 for a typical 
L"Is-L",".lll, .Ips 1 'YpS"LLL.L.S. 
,-.T- ,-A.,..T- ... .." r se..:"- 

technique we will evaluate the 1s and 2s exciton energy levels for a simple Kronig- 
Penney type superlattice. (Note, the inclusion of more complicated band structure 
effects manifests itself solely in the evaluation of the p(a)s, and involves replacing the 
one-electron wavefunctions d z J  and rp,(z,) employed below by the corresponding 
values given by solving, for 111-V or 11-VI compounds for example, the standard 
one-electron 8 x 8 matrix given in the literature [3].) The boundary conditions for the 
latter are well known and involve matching wavefunctions and their derivatives at 
various points [SI. Since, in the authors' laboratory, we are interested in 11-VI com- 
pounds we have employed, forthe purpose of illustration, effective masses and dielectric 
constants appropriate to the CdTe (Cd,-,Mn,Te) system. 

For the particular case of a Kronig-Penney type superlattice, the expression for 
the p(a)s can be obtained in a closed analytical form. However they are not reproduced 
here since they are extremely lengthy. Furthermore, they offer no advantage from the 
computational viewpoint, from the values obtained by straightforward numerical 
integration of (2.22). For the 1s wavefunctions the trial function in (2.14) was employed 
whilst for the 2s state the following function was used: 

The parameters a and h2 for the 2s-state are not wholly independent of the A parameter 
determined for the 1s state, since the total wavefunction @ (see (2.3)) for these two 

To be definite we choose for the CeTe/Cd,-,Mn,Te system a value of x = 0.1. The 
resulting binding energies for the 1s and 2s excitons are shown in figure 2. It is evident 
from this figure that with increasing well width the exciton binding energy rises to a 
maximum before decreasing again at larger well widths. Both the Is and 2s binding 
energies peak at approximately the same value of well width -100 A, and the binding 
energy of !he 1s s!z!e is zpproxima!e!y four to five rimes that of the 2s state. The 
relative value of the binding energy does not vary much with well width for either the 
1s or 2s states. Furthermore, the magnitudes of these binding energies, at any particular 
value of the well width, is relatively insensitive to the fraction of the total energy band 
offset (i.e. the difference in the band gaps between CdTe and Cd,_,Mn,Te) that is 
assigned to the valence band. 

s:a:es iiiiis: ';e orthogcm! :G o x  axc:'.e:: 
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Figure 2. Binding energy as a functionof well width far aCdTe-CdMnTe supcrlattice with 
10% and 40% of the offset in the valence band for ( a )  Is, ( b )  2s exciton. 

We consider next a related question, namely the value of the radiative transition 
probabilities (or, a closely related entity, the oscillator strength f). It is well known 
that, in terms of the previous notation in (2.3) 

f m ( ( 0 ( r , r ) d 3 r  l 2  . 
The resulting values for the oscillator strength of the 1s and 2s excitons calculated in 
this way are shown in figure 3 (which employ the same arbitrary units). The behaviour 
of the oscillator strengths is similar to that of the binding energies in that they increase 
with the well width, peak in the same region -100 8, and then decrease again. However 
they differ from the binding energy curves in comparative terms in three important 
ways. First the oscillator strengths of the 2s exciton are typically two orders of magnitude 
less than those of the Is exciton. The second difference is that the relative change in 

20 40 60 80 100 120 140 160 180 
Wall width (A) 

o . o p ,  
20 40 60 80 100 120 140 160 180 

Wall width (A) 

Flanre 3. Relative oscillator strength as a function of well width for a CdTe-CdMnTt 
superlattice with 10% and 40% of the offset in the valence band for ( a )  Is, ( b )  2s exciton. 
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the oscillator strengths with varying well width is much greater than the corresponding 
changes in the exciton energies. Thirdly, for the wider wells, there is a difference 
involving a factor of two to three between the oscillator strengths for the different 
values of the offset. These results are a good illustration of the fact that the Schrodinger 
equation, being equivalent to the solution of a variational problem, has energy eigen. 
values that are insensitivite to slight changes in the wavefunction. However other 
physical properties, such as the oscillator strength, are far more sensitive measures of 
such variations. 

4. Couclusion 

We have described a method for calculating the energy levels of an exciton whose 
wavefunction can be written in a product form (see (2.3)). The formalism is perfectly 
general and can be applied to a ID potential of arbitrary shape. For the purpose of 
illustration we have chosen a type I superlattice and evaluated the well width depen- 
dence of both the exciton binding energy and the oscillator strength for a 1s and a 2s 
exciton. The general form of the curves are in agreement with those described in the 
literature [9,10] for related physical systems. 
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